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Abstract. The fintarder Raman spectrum for the AI, mode of an Mgh single crystal was 
measured at various temperarures from 301 to 873 K. The frequency shifl and finewidth change 
signifmtly with increasing temperature. In order Io analyse the temperatum dependence of the 
frequency s h i n  first we calculated the anharmonic force constants of an MgFz crystal. Then 
applying the lattice-dynamical perturbative treatment to the third- and fourth-order proper self- 
energy, we evaluated each contribution from the cubic and quatic anharmonic terms to the 
whole shift and could explain the frequency shift throughout the whole range of tempemrures. 
We found that the cubic as well as quartic anharmonic terms play an important role in the 
tempemure dependence of the R ~ , f r q u e n c y  shift for the Aip mode. . 

1. Introduction 

The temperature dependences of the linewidth and frequency shift of the normal vibration 
of several crystals pose a very interesting problem and they have been examined by various 
workers from different points of view [1-12,14-17,28,29]. In these investigations, it 
has been shown that the cubic and quartic anharmonic terms of the cryst& potential 
energy play important roles in %ese phenomena. However, there is some difficulty in 
explaining the contribution of the cubic or quartic anharmonic term to the Raman linewidth 
and frequency shift as a function of temperature, which generally depends on the crystal 
smcture and vibrational mode. Balkanski et al [13] have applied the lattice-dynamical 
perturbative method to silicon with the diamond structure and showed that the cubic and 
quartic anharmonic terms are necessary to describe the temperature dependences of the 
frequency shift and the linewidth of the Lo-mode Raman spec”. 

We have already calculated the temperature dependence of the linewidth of the A,, 
mode for an MgF2 crystal with a lattice-dynamical perturbative treatment including cubic 
and quartic anharmonic terms [26] but have not performed an analysis of the temperature 
dependence of frequency shift of the A,, mode for this crystal. In this paper we shall try to 
explain the Raman frequency shift of the AI, mode of an MgFz crystal from the above point 
of view. In section 2, we shall refer briefly to the experimental method. In section 3,’ we 
shall derive the anharmonic force constants of the rutile structure which are used to calculate 
the proper self-energy part due to phonons. A comparison of c the theoretical calculations 
with the experimental data is given in section 4, and the anharmonic conhibution to the 
Raman shift in an MgFi crystal is discussed in detail. 
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2. Experimental details 

The primitive unit cell of the rutile structure is shown in figure 1,  where the atoms are 
labelled according to Porto et al [lo]. The two positive (magnesium) ions occupy the 
positions (O,O,O) and (i, i, c/2a)a, and the four negative (fluoride) ions occupy the positions 
(u,u,O)a, (1-U, 1-u,O)a, and ($&U, f ~ u , c / Z u ) a ,  wherea andcarelatticeparameters 
and U is the fractional atomic coordinate [IS]. The rutile structure has the symmelry of the 
space group Dli (P4z/mnm). The Raman-active modes are BIg (rt), E, (I';), A,, (r:) 
and Bz, (r:) [IO]. Among these modes, we havechosen the Afg mode because its intensity 
is rather strong. The MgFz single crystal used in this experiment was obtained from Oyo 
Koken Co., cut parallel and perpendicular to the c axis and optically polished; it measured 
4 mm x 4 mm x 5 mm (c axis) and its purity was over 99.99%. An argon ion laser of 
wavelength 4880 A was used as the Raman exciting source. The laser beam was directed 
upon the (1,O.O) plane of the specimen in the Nichrome furnace with an internal diameter 
of 15 mm and a len,& of 100 mm which changes the temperature from 301 to 973 K. 
The scattering light from the (0,l.O) plane was measured with a laser Raman spectrometer 
(model U l - W ,  produced by Nippon Denshi Co.) quipped with a photon-counting system. 
The calibration of the wavelength was carried out with a plasma line of the Ar ion tube. The 
accuracy of the wavelength was 0.5 8, ( f 2  cm-'). Raman measurements were performed 
in a wide range of temperatures. In order to remove the effects of different experimental 
conditions, we have performed a deconvolution of the actual Raman intensity function with 
the response function of the spectrometer by a Lorentzian shape and obtained the real 
linewidth and the frequency shift from the observed spectrum. 
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Figure 1. The tetragonal unit cell for 
the magnesium fluoride uystal,  where 
the atoms are labelled according to lhe 
notation of Porto et a1 [IO]. 
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3. Anharmonic force constants 

The frequency shift A W , ~  observed at the temperature T is made up of a contribution AOO 
from the thermal expansion and a purely anharmonic contribution Am*: 

(1) b o o b r  = AOO + AOA. 
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According to Liarokapis el al 1191 and Raptis el a1 [ZO], the first term in equation (1) can 
be calculated directly from the following equation: 

Awo(T) = - J r  - P *  (,,> dT’ 
O K  T 

where K(T)  is the volume compressibility and P(T) is the volume thermal expansion 
coefficient. On the other hand, in the latticedynamical perturbative treatment [7-131, the 
purely anharmonic contribution AOA (0, j: a) is given by the real part of the proper self- 
energy shown in figure 2 including quartic anharmonic terms of up to second order and 
expressed as 

A W ~ ( O ,  j ;  CL) = bd3)(0, j ;  Q) + A W ( ~ ) ( ~ ,  j ;  a) + A ~ ~ @ ( o ,  j ;  Q) + A#)(o, j ;  a) (3) 

where we have employed the same notation and expression as used by Balkanski er a1 [13] 
for each term appearing in equation (3); so we shall not repeat the rather complex definition. 
The Fourier-transformed anharmonic constants are given as 

V(Ai . . .As) = (1/2S!)(f~/21v)~’~NA(q1 + . . . + & ) [ ~ j , ( q i ) .  . .OJ,,(&)]-~’*C(AI . . ..&) (4) 

where A(ql + . . . + qs) indicates the momentum conservation at each vertex (A(q) = 1 if 
q is a reciprocal-lattice vector and is otherwise 0, and A, is the j th  phonon branch at the 
wavevector q.  According to Ipatova and co-workers [7,16] the coefficients C(Al ... As) are 
slowly varying functions with their arguments in general and are therefore assumed to be 
constant and equal to C,. 

FEgure 2. Diagrams of proper self-energy 
which contribute to the frequency shift AOA 

”., . 1131, where A I  is the collective index for 
‘I’ ’* -- (41). 

In order to calculate. the temperature dependence of the Raman shift, the cubic and 
quartic coefficients C, of central short-range force were derived for the rutile structure on 
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the assumption that there are no Coulomb anharmonicities. As mentioned before, there 
are four proper self-energy diagrams up to second order contributing to the temperature 
dependence of the Raman shift shown in figure 2. The anharmonic coefficients IC3I2 and 
IC4I2 corresponding to figures 213) and 2(c), respectively, have the same expressions as in 
I261 and play an important role in the temperature dependences of bath the Raman linewidth 
and the shift. On the other hand, with respect to the frequency shift, figures 2(a) and 2(d) 
should be considered. Thus we have to calculate the new anharmonic coefficients IC;[ 
and IC:[ corresponding to figures 2(a)  and 2(d), respectively. After performing tedious 
calculations according to Ipatova and co-workers [7,16],  we obtained new expressions for 
the anharmonic coefficients: 

( 5 )  IC2 = [ l / O ; ( o , P 2 1 c ~ , ~ c ~  + 2ci9 

+ c::(c:c" + 2cg + c:: + 4(c:: + 2c:;)}1 

where p2 and S3 are defined by [7] 
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Table 1. Panmeters used to calculate the phonon frequency q ( q )  [181. 

Shon-range force wnstants (in units of e2/2u) 

A I  =71.596 A1 = 72.356 Ag = 4.172 Aa = 16.915 
BA = -1.542 81 = -9.022 B? = -7.356 Bq = 0.030 

Effectwe chage (in unit3 of e) 

Mg, 158 F, -0 79 

where, using atomlc positions and atomic distances in terms of lattice parameters U and c 
and atomic parameter U, the parameters r l ,  rz. r1 and tz are defined by 

rl = A u a  

t i  = (l/rz)a(-f +U) 

rz = a[2(? 1 - U)' + cz/4aZ]'12 
(23) 

tz = (I /rz)a(-c/2u) .  

The dimensionIess parameters f l  and t2 satisfy the following relation: 

zt:+t:  = 1. (24) 

The coefficients AI,  Az ,  B l ,  Bz, CI and C2 involve derivatives of potential up to third and 
fourth order and can be obtained for our model ,as 

4. Calculation of the frequency shiits 

The normal mode frequency oj(q) for an MgF2 crystal was first calculated using the 
same parameters and applying the same method for the rigid-ion model as described by 
Katiyar'and Krishnan [Ill. ,In the present paper, the normal mode frequency oj(q) was 
calculated for one sixteenth of the first Brillouin zone (figure 3). Therefore the wavevector 
q = (irn,/lOa, nn,/lOa, rrnJl0c) satisfies the conditions 

0 <ny < n, < 10 0 < n, < Ib (31) 

where n,, ny and nL are integers. There are 726 sets of wavevectors in this region, and 
9261 sets can all be expanded in the first Brillouin zone' by symmetry. We have used' 
the same values as Katiyar [le] for the force constants and effective charges (table 1) in 
the calculations of the normal mode frequency oj(q) in all the first Brillouin zone. The 
dispersion curves were checked in the direction q ( I , O , O ) ,  q(1, 1,O) and q(O,O,  1) and 
agree with the results of Katiyar 1181. The calculated 'phonon energy surface' in the qz-qy 
plane (qz = 0) .of the F: (AI,) mode in the first Brillouin zone is presented in figure 4. 
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Figwe 3. Brillouin lone of the MgPl 
crystal 11 1.181. 

Figure 4. calculated phanon 
energy surface of the r: (AI,) 
mode. 

Next, we shall estimate the frequency shift Am due to the thermal expansion using 
equation (2) which can be expressed under the assumption that the isothermal mode 
Griineisen parameter y,,,d is temperature independent [ 19,201 as 

T 
Aoo = -q(O)ymod~ 1 B(T’)dT’ (32) 

where we take oj(0) as 413 cm-’ from the experimental results of Browder [21] at a very 
low temperature (about 16 K). On the other hand, Liarokapis er al [191 and Raptis er 01 
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[20] have shown that the volume thermal expansion coefficient p is covered well by the 
analytical form [19,20] 

B(T) = ( A / T  + B/T')sinh-*(T,/T). (33) 

We have applied equation (33) to the experimental results of Bmwder 1211 in the temperature 
range 16-310 K. The best values of the constants A, B and TI are obtained as A = 
2.727 86 x B = 1.395 08 K and Ti = 240 K (shown by the full curve in figure 5). 
On the other hand, Pascusal et a1 [22] have estimated some values of the mode Griineisen 
parameter y ~ , ,  as 2.2 (rigid-ion model) and 2.4 (shell model) theoretically and 2.3 f 0.2 
from the uniaxial stress experiment, while Streifler and Barsh 1231 give the value 1.24 
from theoretical calculation. Therefore, we regard the temperatureindependent isothermal 
mode Griineisen parameter y ~ , &  as an adjustable constant in the calculation of equation (3) 
[ZO, 24.251. The theoretical and experimental values of the Raman frequency shift of the 
AI, mode versus temperature for the MgFz crystal are presented in figure 6, including up to 
quartic anharmonic terms with the thermal expansion contribution Am. We have chosen the 
value of the mode Griineisen parameter yall as 1.95 to fit the experimental results in figure 6 
because the introduced mean error of about 10% will not affect the general character of the 
results [20,24,25]. This calculation has been carried out on an HP730 (UNIX) computer. 
The calculated values of cubic and quartic anharmonic con&ibution to the frequency shifi 
AOA which correspond to figure 2 [13,29] are presented in figure 7 in the temperature range 
100-1000 K. 

~ 

~ 

Temperature ( K )  

"re 5. The volume thermal expansion coefficients B(T) for the MgFz crystal: -. 
theoretical fit of equation (33); 0. observed values [ZI]. 
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Figme 6. Calculated frequency shifl due to 
Le cubic and quartic anharmonic terms in 
equation (1): 0,  experimental points of this 
work; c, observed values of SauvJol er a1 
[271 in the low-temperature range. 

5. Conclusion 

We have already performed the calculabon of the temperature dependence of the linewidth 
of the Raman spectrum for the Ais mode of an MgF2 crystal [26]. Here, we investigated 
the temperature dependence of the frequency shift of this crystal by a lattice-dynamical 
perturbative treatment [7-131. 

The contributions to the temperature dependence of the frequency shift Awobs can be 
divided into two p m :  the volume thermal expansion Awo and the purely anharmonic terms 
AoA. The former was estimated by assuming the analytical form of the volume thermal 
expansion coefficient [19,20]. In order to calculate the latter contribution, first we calculated 
the anharmonic force constants of the MgF2 rutile structure which appear in the interaction 
vertex of proper self-energy. Then, a full calculation of the real part of the proper self- 
energy including the cubic and quartic anharmonic terms has been made, and we calculated 
the anharmonic contribution to the frequency shift as a function of temperature. As seen 
in figure 6, the experimental value shows good agreement with the theoretical results in 
the approximate temperamre range 16-973 K. In particular, figure 7 shows that there is 
rough cancellation between the contributions from figures 2(a) and 2(d) to the anharmonic 
frequency shift AmA, and the quartic anharmonic term will play an increasingly important 
role with increasing temperature. The experimental and theoretical results of the temperature 
dependence of the Raman linewidth of the Ai, mode 1261 also indicate the necessity of 
including the cubic as well as the quartic anharmonic term. Therefore we conclude that the 
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. .  

anharmonic contribution to the frequency 
0 200 400 600 800 1000 Figure 7. Calculated curves of the purely 

shifl from figwe 2. 
Tempe~arure IKi 

temperature dependence of the linewidth and frequency shift of the Raman-active A,, mode 
for the MgF2 crystal can be explained completely by taking into account both the cubic and 
the quartic anharmonic terms. 
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